The United Kingdom Prospective Diabetes Study (UKPDS) was a clinical study conducted by Z that was published in The Lancet in 1998. Around 3,800 people with type 2 diabetes were followed for an average of ten years, and were treated with tight glucose control or the standard of care, and again the treatment arm had far better outcomes. This confirmed the importance of tight glucose control, as well as blood pressure control, for people with this condition.[89][135][136]

Diabetes is a chronic disease, for which there is no known cure except in very specific situations.[78] Management concentrates on keeping blood sugar levels as close to normal, without causing low blood sugar. This can usually be accomplished with a healthy diet, exercise, weight loss, and use of appropriate medications (insulin in the case of type 1 diabetes; oral medications, as well as possibly insulin, in type 2 diabetes).

Q. My 7yr has Diabetes. She been Diabetic for about 5 weeks and we can't get numbers at a good spot. she aether way to low (30- 60 scary when she gets like this) and to high (300 - 400) We been looking at what she eating calling the physician. he been play with here shots but nothing working. Its when she at school is were the nuber are mostly going up an down. we been trying to work with the school but she the only one in the hole school that has Diabetes. what to do ?
Prevention and treatment involve maintaining a healthy diet, regular physical exercise, a normal body weight, and avoiding use of tobacco.[2] Control of blood pressure and maintaining proper foot care are important for people with the disease.[2] Type 1 diabetes must be managed with insulin injections.[2] Type 2 diabetes may be treated with medications with or without insulin.[13] Insulin and some oral medications can cause low blood sugar.[14] Weight loss surgery in those with obesity is sometimes an effective measure in those with type 2 diabetes.[15] Gestational diabetes usually resolves after the birth of the baby.[16]
Random blood sugar test. Blood sugar values are expressed in milligrams per deciliter (mg/dL) or millimoles per liter (mmol/L). Regardless of when you last ate, a blood sample showing that your blood sugar level is 200 mg/dL (11.1 mmol/L) or higher suggests diabetes, especially if you also have signs and symptoms of diabetes, such as frequent urination and extreme thirst.
Central diabetes insipidus. A synthetic, or man-made, hormone called desmopressin treats central diabetes insipidus. The medication comes as an injection, a nasal spray, or a pill. The medication works by replacing the vasopressin that a patient’s body normally produces. This treatment helps a patient manage symptoms of central diabetes insipidus; however, it does not cure the disease. 

^ Jump up to: a b c Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. (December 2012). "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2163–96. doi:10.1016/S0140-6736(12)61729-2. PMC 6350784. PMID 23245607.
Type 2 diabetes is primarily due to lifestyle factors and genetics.[47] A number of lifestyle factors are known to be important to the development of type 2 diabetes, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[17] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11] 

A metabolic disease in which carbohydrate use is reduced and that of lipid and protein enhanced; it is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma; long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.
Gestational diabetes insipidus occurs only during pregnancy. In some cases, an enzyme made by the placenta—a temporary organ joining mother and baby—breaks down the mother's vasopressin. In other cases, pregnant women produce more prostaglandin, a hormone-like chemical that reduces kidney sensitivity to vasopressin. Most pregnant women who develop gestational diabetes insipidus have a mild case that does not cause noticeable symptoms. Gestational diabetes insipidus usually goes away after the mother delivers the baby; however, it may return if the mother becomes pregnant again.
This test measures the changes in body weight, urine output, and urine composition when fluids are withheld to induce dehydration. The body's normal response to dehydration is to conserve water by concentrating the urine. Those with DI continue to urinate large amounts of dilute urine in spite of water deprivation. In primary polydipsia, the urine osmolality should increase and stabilize at above 280 mOsm/kg with fluid restriction, while a stabilization at a lower level indicates diabetes insipidus.[10] Stabilization in this test means, more specifically, when the increase in urine osmolality is less than 30 Osm/kg per hour for at least three hours.[10] Sometimes measuring blood levels of ADH toward the end of this test is also necessary, but is more time consuming to perform.[10]
Another area of pathologic changes associated with diabetes mellitus is the nervous system (diabetic neuropathy), particularly in the peripheral nerves of the lower extremities. The patient typically experiences a “stocking-type” anesthesia beginning about 10 years after the onset of the disease. There may eventually be almost total anesthesia of the affected part with the potential for serious injury to the part without the patient being aware of it. In contrast, some patients experience debilitating pain and hyperesthesia, with loss of deep tendon reflexes.

There are four types of DI, each with a different set of causes.[1] Central DI (CDI) is due to a lack of the hormone vasopressin (antidiuretic hormone).[1] This can be due to injury to the hypothalamus or pituitary gland or genetics.[1] Nephrogenic DI (NDI) occurs when the kidneys do not respond properly to vasopressin.[1] Dipsogenic DI is a result of excessive fluid intake due to damage to the hypothalamic thirst mechanism.[1] It occurs more often in those with certain psychiatric disorders or on certain medications.[1] Gestational DI occurs only during pregnancy.[1] Diagnosis is often based on urine tests, blood tests and the fluid deprivation test.[1] Diabetes mellitus is a separate condition with an unrelated mechanism, though both can result in the production of large amounts of urine.[1]
To distinguish between the main forms, desmopressin stimulation is also used; desmopressin can be taken by injection, a nasal spray, or a tablet. While taking desmopressin, a person should drink fluids or water only when thirsty and not at other times, as this can lead to sudden fluid accumulation in the central nervous system. If desmopressin reduces urine output and increases urine osmolarity, the hypothalamic production of ADH is deficient, and the kidney responds normally to exogenous vasopressin (desmopressin). If the DI is due to kidney pathology, desmopressin does not change either urine output or osmolarity (since the endogenous vasopressin levels are already high).[medical citation needed]
The earliest surviving work with a detailed reference to diabetes is that of Aretaeus of Cappadocia (2nd or early 3rd century CE). He described the symptoms and the course of the disease, which he attributed to the moisture and coldness, reflecting the beliefs of the "Pneumatic School". He hypothesized a correlation between diabetes and other diseases, and he discussed differential diagnosis from the snakebite, which also provokes excessive thirst. His work remained unknown in the West until 1552, when the first Latin edition was published in Venice.[113]

Patients with type 1 DM, unless they have had a pancreatic transplant, require insulin to live; intensive therapy with insulin to limit hyperglycemia (“tight control”) is more effective than conventional therapy in preventing the progression of serious microvascular complications such as kidney and retinal diseases. Intensive therapy consists of three or more doses of insulin injected or administered by infusion pump daily, with frequent self-monitoring of blood glucose levels as well as frequent changes in therapy as a result of contacts with health care professionals. Some negative aspects of intensive therapy include a three times more frequent occurrence of severe hypoglycemia, weight gain, and an adverse effect on serum lipid levels, i.e., a rise in total cholesterol, LDL cholesterol, and triglycerides and a fall in HDL cholesterol. Participation in an intensive therapy program requires a motivated patient, but it can dramatically reduce eye, nerve, and renal complications compared to conventional therapy. See: insulin pump for illus.